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A solution of the problem of acoustic wave diffraction by a wedge with a cic- 
cular cap, whose center is at the wedge apex, is constructed by the Fourier 

method. Asymptotics of the wave field for different relationships between the 
cap radius and the wavelength are obtained from the exact solution, The con- 
nection between the asymptotic behavior with respect to distance and the long- 

and shortwave ~ymptotics is discussed. 

The two-dimensional problem of diffraction from a point source ( at the point 
(rO, rpO)) in a system consisting of an angle 0 < q < 2n - CD; 0 < CD Q 2n 

and a circle r = a is considered (see Fig. 1 ). A function u is investigated such that 

(A+k2)n=S(M--~IMo), r>a, o<lp<a, 

adar - iku = 0 (r-“2), 
(1) 

r--,00 

u Is = 0, s = so u s, u Sa 

~~~{~>~,cp=O},~~={r>~,~=t=CP),S~={r=a,O<~<~} 
(2 1 

and 1 grad a 1 a is locally summable. 
A unique solution of this problem is cons~cted by separation of variables 

a = lea, P*+ = max (P, P& P* = min (P, poll P = kr. pa = kr,,, 5 = *@ 

where J, f$l) are the Bessel and Hankel functions of the first kind, respectively. 

Let US investigate the asymptotics of the i?.mction n as P* 4 00 (an4 there- 

fore, P** -* oo) and different (a,. 
M 

Fig. 1 Fig. 2 

lo . Let us start with the case a -) co when the radius of the cap signif - 
icantly exceeds the wavelength. Let us first assume that P++ - w) . The solution is 

investigated bv the usual methods of analyzing the shortwave asymptotics. ( * ) 
-__- .’ 
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The function (3) is converted into a contour integral, whose asymptotic behavior de- 
pends essentially on the mutual location of the source M. and the observer. Omitting 
the long, but standard, calculations, let us present the results for two characteristic 

cases. 
A. In the domain where there is just one wave reflected from the cap (see 

Fig. 1 ) 

u=k-“p L,+Lo+S t )%x* [ik(L + Lo)] (I+- 0 (+)) (4) 
(L, and L are members of the reflected ray, 0 is the angle of reflection ). Under 

the condition a2 / p* + 0 the expression (4) corresponds to a cylindrical wave diver- 
ging from the apex of the angle 

‘11 
u= cos”’ cp 

- ‘PO exp ii (P + ~011 
- 2 (PPO)Vl (I + 0 (+))(I +0 (E)) (5) 

B , If the point M is in the zone of geometric shadow (Fig. 2 ), then 

U = Aa-% - (I$,S exp [i&C’ G] x exp [ik (E + lo + AZ)] (1 + 0 (a-‘I’)) t6 ) 

Here 
A = 2-‘ls (w,’ (Q)-2, B = 2-“9, 

W, is the Airy-Fock function, t1 is its root closest to the real axis, 1 and z,, are the 
lengths of the tangents drawn from M and MO to the circle r = a, and A1 is the arc 
of wave slip. In obtajning (6) it can be noted that it is admissable to let o* / c.9 tend 
to infinity. The field shadow zone also acquires the character of a cylindrical wave 

u = AaXiaexp i Balh+ a 19, _ q,, 1 cc )I exp ;;:‘;y f+)l (1 + 0 (a-‘/3)) (7) 
x(1 + 0 W/P* )) 

0 

however, the amplitude and directivity pattern is completely different than in the ex - 
posed region. 

The expressions (5) and (‘7 ) are not similar to the known edge wave from the 
apex of an angle without a cap (see [l ] , for instance ) , and tend to zero as a formally 

approaches zero. The formulas of geometric diffraction theory (4), ( 6 ) , which are 
obtained for a - 00, do not allow a passage to the limit for small a. 

The result turns out to be analogous for other mutual locations of M and M,, 

2O . Let a= O(1). i.e., the radius of the cap is commensurate with the 
wavelength. Now, in contrast to the preceding case, it is expedient to consider the cap 
a perturbation and to partition the solution into the sum 

u=v+w 
(3 1 

of the Green’s function w of the exterior of the angle 0 < cp < 2n - @ with the 
Dirichlet boundary condition W I,=, = w IV=@ = 0 , and the addition v due to the cap 

The function w has been studied well (see [l], for example ). Let us examine just 
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the addition V dependent on a . Values of Jme, (a) decrease exponentially while 
H,!$ (a) grows with the increase in m when rn6 > CC. Hence, only a small num- 

ber of components on the order of 0 (a) introduces a contribution to the sum (9) for 
bounded a . The arguments p and pa in the numerator of the Hankel function are 
large compared to the subscript for each. Using the asymptotics 

HSl) (z) = 2"' (nz)_"2 ~=~[i(z-~--)](l+O(~)j, +o 

and then adding the exponentially small components, we obtain 

v_2 expli(p+p,)l ma Jw(a) IL 
(10) 

a (PPOY’p ,=; H:;(o) 
exp (-- imc) sin rncq sin rn<q, 

The corrections for the cap corresponds in the far zone to a cylindrical wave of 
the same order in p and p,, as for the edge wave from the apex of the angle, but with 
another pattern complexly dependent on a. 

An ever smaller number of members of the series (9) (just as its asymptotics 

(10) in P* > plays a noticeable part as a diminishes. 

3” . In the long wavelength case a - 0 (the wavelength noticeably exceeds 
the radius of the cap >, the series (9) and (10 ) are asymptotic in a and 

n2 a 2): 

“-,r2(5) 2 ( ) II?) (p) Ht) (pO) sin 6q sin CT0 (1 -j- 0 (CZAR)) (11) 

c-2 
exp (- i6) 

C i 
c ‘22 ew[i(p+Po)l x 

rs(6) 2 (PPo)'/' 

sin58sin580(1+O(az~))(i+O(~)) 

under the condition that 5 # 1. For t = 1 , the error i + 0 (&) in (11) is replaced 
by 1 + 0 (a” / In a). The form of the subsequent terms of the expansion v as a 4 00 
depends on whether there is at least one integer among the numbers m6 . If so, then 

the asymptotic series contains powers and logarithms of a, otherwise, only powers. In 
particular the logarithmic terms are characteristic for those Q for which there is no 

edge wave from the apex of the angle without a cap (a = 0) . 
Upon replacement of the Dirichlet boundary condition (2) by the Neumann 

condition 

-q,,=~~s,=q& 

(12 ) 

the correction for the iniluence of the cap is converted into 
m 

(13) 
VcN)= ic H::(p) H(l) (p my 0 ) cos rnc cp cos rn& n 

ao=i; 6, “IZ, m # 1 

The function (13 ) evidently is on the order of 0 (1 / In a) as a + 0 . If the 

Neumann condition is imposed on the faces of the angle So and S, and the Dirichlet 
condition on the cap Sn , then v = 0 (a). 

4” . A more detailed analysis of the derivation of (10 ) shows that it is also 
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valid as a + CO if only a2 / p* -+ 9. It is easy to study the sum in (10 ) which now 
contains the large diameter a by known methods. (*) . 

In the lighted region (see Fig. 1 ) , the right side of (10 ) is converted into a 
contour integral. Evaluating its asymptotic behavior by the saddle-point method, the 
principal member in (5 ) can be obtained. In this case the function W has a lower 

order: W = 0 (p,l’pV). 

In the shadow, the partition (8 ) is not expedient. An expression analogous to 
(10 ) can be obtained for the complete field u = T/ -k w , and it can be converted 
into a contour integral. The asymptotics of this latter is given by the residue and agrees 

with (7). 
Thus, the formulas obtained for the scattering problem : a = 0 (I), p* - 00, 

have a common domain of applicability with the shortwave and longwave asymptotics. 
Let us note that a problem which converges to that considered when CD = 2n, 

was studied in [2 1. Simple formulas have been obtained only for the shortwave case 
.ahw, a-P--o. 

*) See the previous footnote 1. 
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